Towards All-Silicon Opto-coupling Systems (ASOs)

Posted 2 years ago


Maarten Swanenberg (NXP Nijmegen):
Ray Hueting (Power Electronics group):
Anne-Johan Annema (IC Design group):



For today’s move towards electrifying the world, we need even more research, development and implementation of break-through electronics systems. This particularly holds, for example, for electric cars, solar energy conversion and other types of upcoming smart power systems. In the vast majority of these systems, some parts operate at high voltages (up to several hundreds of volts) while any control and interface electronics operates at low voltages (a few volts). For safety and immunity reasons, the interface between the high power domain and the control/interface domain must be galvanically isolated while data-communication between those domains is crucial.

To make a next step in fully galvanically isolated data transfer in a single silicon die, research was done at the UT (sponsored by NXP) that yielded the first fully silicon integrated opto-coupler. Such an opto-coupler basically makes use of light for data-communication via a light emitting diode and photodiode which are mutually galvanically isolated. See also e.g.

We defined assignments that focus to a next step to enable smart power systems. In this, we aim at high-voltage (several kV’s) galvanic isolation through opto-coupling in an advanced electronic system formed by multiple smart-power ICs. Boundary conditions include fabrication in state-of-the-art technologies used for actual power ICs, satisfying the most stringent performance requirements (automotive grade 0), pursuing break-through concepts. This assignment is part of the “All Silicon Opto-coupling” project which is a joint project by NXP and the UT.

We defined a number of assignments:

BSc assignments:

  1. To reach multiple kV of isolation, novel single-package multi-Si-die solutions are probably required. In this assignment, a literature survey is done on various reported waveguiding and packaging methodologies to allow in-package opto-coupling between multiple dies. The main focus will be on power applications, but other types of applications such as RF and digital form also part of this study. Theoretical aspects of isolation, creep, breakdown and other package and IC technology related issues are key in this. (BSc)


  1. In this “All Silicon Optocoupler” project, the focus is on data transfer via light. The aim is to obtain a breakthrough performance for which it is necessary to also benchmark against competing approaches. In this assignment, a literature survey on various coupling approaches is carried out. These alternatives include capacitive and inductive coupling methods. In the assignment, the galvanic isolation performance and used silicon area should be estimated as a function of performance and cost (in terms of power and area). The focus is on fully integrated (i.e. monolithic, system-on-chip, SoC) solutions, but also multi-die single-package (i.e. system in package, SiP) are part of this study. Depending on the available time, circuit simulations will be performed for either validating or even improving the alternative approaches. We want to benchmark against the best possible alternative, so we challenge you to find the best alternative and even to improve that one!  (BSc)


  1. For the predecessor of the “All Silicon Optocoupler” research project (see e.g. we made building blocks in the previously available technology. A number of building blocks have not been measured and characterized yet. They can however provide valuable information on many feasibility aspects. In this BSc-assignment, a mainly experimental study is done into various existing on-chip (hence lateral) optocouplers in our previously available chip technology. This chip includes various novel LED designs such as a “superjunction” LED and a “horse shoe shaped” LED. The basic idea is to determine the opto-coupling efficiency for all opto-couplers, benchmark them and explain the differences theoretically. (BSc)


  1. For the OiC project that predates the current research project (see e.g. we made a number of building blocks in a specific industrial power IC technology technology (ABCD9). Particularly an experimental study to investigate die-to-die opto-coupling and galvanic isolation in existing ABCD9 material has not been carried out yet. Preferably those dies should be stacked vertically for efficient optical coupling, but laterally would also be interesting for electrical isolation reasons. In this BSc assignment, experimental characterization of die-to-die opto-coupler is targeted, augmented with theoretical analyses. The realization of the die-to-die stacking will be performed by NXP. For lateral side-by-side coupling a type of transparent droplet may be investigated. (BSc)


  1. For any sensible system, performance over lifetime is essential. This is already true for consumer products such as handheld phones, that only need to perform for about 5 years before they are out of fashion. For industrial and automotive (smart) power applications lifetime demands are very high (15 years) while failure rates should stay below single digit ppm levels. In this BSc assignment, lifetime issues and degradation phenomena in silicon (Si) avalanche-mode and forward-mode light emitting diodes, abbreviated as AM-LEDs respectively FM-LEDs, are studied. This assignment contains a large chunk of experimental work to measure degradation: study the light emission spectrum, efficiency and electrical characteristics before and after stressing, and as a function of time/temperature. Then correlate this with theoretical phenomena to model/explain the behavior.


Job Features

Job CategoryBachelor Assignment, Final assignment

Apply Online